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FACING PAGE. Three-dimensional visualization 
of the ecological marine units (EMUs) for the 
Banda Sea. EMUs are depicted as bands on cyl-
inders, and pink colors indicate warmer EMUs, 
where blue colors represent colder EMUs. On 
land, the global ecological land units (ELUs) of 
Sayre et al. (2014) are shown.

INTRODUCTION
Ecosystems are a central focus of many 
current research and policy questions, 
including: (1) What are the impacts of 
climate change on ecosystems? (2) Which 
ecosystems are vulnerable to climate and 
other perturbations (e.g.,  invasive spe-
cies, land and sea use)? (3) Which ecosys-
tems should be targeted for conservation? 
(4) What are the economic and social val-
ues of ecosystem goods and services? 
and (5) What role do ecosystems play in 
global food and environmental security 

(Liu et  al., 2007, 2015)? Fundamental 
knowledge of the types and locations of 
global ecosystems is necessary to address 
these questions, yet that knowledge is 
generally lacking. 

The development of a new global eco-
systems map, including terrestrial, fresh-
water, and marine domains, was therefore 
commissioned by the intergovernmen-
tal Group on Earth Observations (GEO, 
https://www.earthobservations.org), a 
consortium of over 100 nations seeking 
to advance Earth observation approaches 
for addressing societal challenges related 
to hazards, food, water, energy, and the 
environment. The new global ecosys-
tems maps were to be derived from data 
rather than from expert opinion or socio-
political considerations, and they were to 
be based on the physical environmental 

features that are understood to influence 
the distribution of species. 

Ecosystems are geographically iden-
tifiable areas where the interactions 
of organisms with their physical envi-
ronments produce differences in biotic 
diversity, trophic structure, and flows 
of energy and materials between living 
and nonliving components of the system 
(Odum, 1971). On land, variations in cli-
mate, landform, and substrate establish 
the environmental potential that controls 
primary production and species distribu-
tions, acknowledging that evolutionary 
history is also an important element of 
biogeography (Bailey, 1996, 2014; Kottek 
et al., 2006; Holt et al., 2013). Responding 
to the GEO commission request for a 
standardized, robust, and practical global 
map of terrestrial ecosystems, a new map 
of global ecological land units (ELUs) 
was developed from an integration of 
climate, landform, lithology, and land 
cover (Sayre et  al., 2014). We now pres-
ent a similar environmental stratification 
approach for extending the global ecolog-
ical units map into the ocean through the 
delineation of global ecological marine 
units (EMUs).

There are notable differences between 
mapping terrestrial and mapping marine 
ecological units. First, the terrestrial 
ELUs were mapped as two-dimensional 
(2D) entities using a raster data surface. 
Marine ecosystems, however, are funda-
mentally understood as both 2D (e.g., sea 
surface and seafloor) and three-dimen-
sional (3D; e.g.,  water column) entities 
(e.g.,  Li and Gold, 2004; Wright et  al., 
2007). EMUs would ideally need to be 
mapped using 3D data points represent-
ing a volumetric mesh (e.g.,  Heinzer 
et al., 2012; Reygondeau et al., 2017) and 
visualized as 2D and 3D objects. Second, 
the characteristics of the physical envi-
ronment that influence the distribution 
of species and ecosystems are different 
between terrestrial and marine environ-
ments. While the ELUs were identified 
as distinct combinations of bioclimate, 
landform, lithology, and vegetation, those 

ABSTRACT. The existence, sources, distribution, circulation, and physicochemical 
nature of macroscale oceanic water bodies have long been a focus of oceanographic 
inquiry. Building on that work, this paper describes an objectively derived and globally 
comprehensive set of 37 distinct volumetric region units, called ecological marine 
units (EMUs). They are constructed on a regularly spaced ocean point-mesh grid, 
from sea surface to seafloor, and attributed with data from the 2013 World Ocean Atlas 
version 2. The point attribute data are the means of the decadal averages from a 57-year 
climatology of six physical and chemical environment parameters (temperature, 
salinity, dissolved oxygen, nitrate, phosphate, and silicate). The database includes over 
52 million points that depict the global ocean in x, y, and z dimensions. The point 
data were statistically clustered to define the 37 EMUs, which represent physically 
and chemically distinct water volumes based on spatial variation in the six marine 
environmental characteristics used. The aspatial clustering to produce the 37 EMUs 
did not include point location or depth as a determinant, yet strong geographic and 
vertical separation was observed. Twenty-two of the 37 EMUs are globally or regionally 
extensive, and account for 99% of the ocean volume, while the remaining 15 are smaller 
and shallower, and occur around coastal features. We assessed the vertical distribution 
of EMUs in the water column and placed them into classical depth zones representing 
epipelagic (0 m to 200 m), mesopelagic (200 m to 1,000  m), bathypelagic (1,000 m 
to 4,000 m) and abyssopelagic (>4,000 m) layers. The mapping and characterization 
of the EMUs represent a new spatial framework for organizing and understanding 
the physical, chemical, and ultimately biological properties and processes of oceanic 
water bodies. The EMUs are an initial objective partitioning of the ocean using long-
term historical average data, and could be extended in the future by adding new 
classification variables and by introducing functionality to develop time-specific EMU 
distribution maps. The EMUs are an open-access resource, and as both a standardized 
geographic framework and a baseline physicochemical characterization of the oceanic 
environment, they are intended to be useful for disturbance assessments, ecosystem 
accounting exercises, conservation priority setting, and marine protected area network 
design, along with other research and management applications.
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elements of terrestrial ecosystem struc-
ture do not apply as such in the ocean, 
with the exception of seafloor land-
forms. The abiotic controls on the distri-
bution of marine biota (e.g., temperature, 
as in Beaugrand et al., 2013), and nutri-
ents, as in Longhurst, 2007) were identi-
fied as analogs to the terrestrial environ-
mental characteristics. Third, the ocean 
is a fluid in motion, and ocean ecosys-
tem conditions can be influenced by pro-
cesses far from their location via ocean 
circulation. Marine ecosystems are there-
fore generally understood as more spa-
tiotemporally dynamic than their terres-
trial counterparts. 

Considerable research in quantita-
tive water mass analysis has produced a 
robust and standardized terminology for 
describing water masses with respect to 
their origins, properties, and locations 
(Tomczak, 1999). The ocean’s hydro-
graphic structure has been described 
with evolving complexity, beginning with 
the seminal work of Sverdrup (1942) and 
including the early delineation of global 
water masses by Emery and Meincke 
(1986) based on temperature and salinity 
properties. Expanding on the temperature 

and salinity relationships, more recent 
quantitative water mass characterizations 
are multidimensional and feature the use 
of tracer distributions to identify water 
mass origins. For example, Gebbie and 
Huybers (2011) comprehensively iden-
tified the surface origin of points in the 
ocean interior at 33 depth levels using cli-
matological and isotope ratio data and 
tracer path analysis. 

In addition to origin-based quantita-
tive water mass analysis, another com-
mon approach to identifying oceanic 
water bodies involves subdivision of 
ocean regions or volumes based on dif-
ferences in their physical, chemical, and 
biological properties (Sherman et  al., 
2005; Longhurst, 2007; Spalding et  al., 
2007; Reygondeau et  al., 2017). While 
various marine oceanic region maps exist 
(Table  1), few are global in extent, are 
representative of the entire water column 
in three dimensions, and were derived 
from quantitative analysis of data. Three-
dimensional, globally comprehensive 
subdivisions of the ocean are particularly 
lacking. The quantitative, 3D analysis of 
Gebbie and Huybers (2010, 2011) iden-
tified seven surface water source regions 

of global ocean water, but did not map 
different regions by depth. Reygondeau 
et  al. (2017) objectively subdivided the 
Mediterranean Sea into 63 biogeochem-
ical regions in a true 3D analysis using 
data and biologically meaningful crite-
ria to separate the water column verti-
cally into epipelagic, mesopelagic, bathy- 
pelagic, and seafloor zones. However, 
there has not been a purely quantita-
tive, unsupervised approach to parti-
tioning the entire global ocean water 
column from aspatial statistical cluster-
ing of global ocean data, even though 
an unprecedented amount of global 
marine environmental data is now avail-
able (e.g., the 2013 World Ocean Atlas of 
Locarnini et al., 2013; Zweng et al., 2013; 
Garcia et al., 2014a, 2014b). 

We approached the challenge of aggre-
gating comprehensive marine environ-
mental data through statistical clustering, 
building on the efforts of previous authors. 
For example, Harris and Whiteway 
(2009) used a multivariate statistical 
method with six biophysical variables 
(depth, seabed slope, sediment thickness, 
primary production, bottom- water dis-
solved oxygen, and bottom temperature) 

TABLE 1. Existing maps of ocean regions.

NAME GEOGRAPHIC 
SCOPE

BASIS

Countries’ Exclusive Economic Zones (EEZs) 
(United Nations, 1982) Global, Coastal Political

Large Marine Ecosystems (LMEs) (Sherman et al., 2005) Global, Coastal Management areas

Marine Ecoregions of the World (MEOWs) 
(Spalding et al., 2007) Global, Coastal Expert-derived biogeography (realms, provinces) and 

management units (ecoregions)

Fisheries and Agricultural Organization (FAO) Major  
Fishing Areas (FAO, 2016) Global Rectangular fishery statistical assessment regions

International Council for the Exploration of the Sea 
Ecoregions (ICES, 2004)

Regional  
(Northeast Atlantic) Large ecosystem and fishery management areas

International Hydrographic Organization Seas and Oceans 
(IHO, 2002) Global Geographically named areas

Ecoregions of the Oceans and Continents (Bailey, 2014) Global Expert recommended regions

Global Open Ocean and Deep Seabed (GOODS) 
Biogeographic Characterization (UNESCO, 2009)

Global, Benthic and 
Pelagic Expert recommended regions

Deep-Sea Provinces (Watling et al., 2013) Global, Benthic Expert-derived revision of GOODS based on literature review

Biogeochemical Provinces (Longhurst, 2007) Global Satellite ocean color

Seafloor Map (GSFM) (Harris et al., 2014) Global Expert geomorphological feature extraction using 30 arc-
second bathymetry data

Deep-Sea Seascapes Map (Harris and Whiteway, 2009) Global Multivariate analysis of seabed morphology and sediments
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to objectively classify the entire ocean 
floor into 53,713 separate polygons com-
prising 11 different categories. The 11 cat-
egories had mean polygon sizes ranging 
from 1,000 km2 to 22,000 km2 and were 
restricted to the seafloor. Reygondeau 
et  al. (2017) statistically clustered data 
from the Mediterranean Sea into dis-
tinct biogeochemical regions within bio-
logically meaningful, predetermined 
depth zones. To our knowledge, the pres-
ent study is the first to objectively clas-
sify the entire global ocean water col-
umn simultaneously across all depths 
into discrete regions based on compre-
hensive statistical clustering of physi-
cal and chemical environmental data 
from all points in the World Ocean Atlas 
(WOA)-derived ocean mesh.

Most oceanography and marine biol-
ogy textbooks include diagrams that 
divide the ocean into depth zones 
(e.g., Figure 1). Shallower, sunlit depths at 
or near the surface are usually presented 
as the photic layer, which extends to the 
general limit of light penetration (99% of 
incident light) at a depth of about 200 m 
(Stal, 2016). Beneath this depth, photo-
synthesis is largely lacking (Costello and 
Breyer, 2017). This same depth zone to 
200 m is also commonly referred to as 
the epipelagic zone. Beneath this zone 
at depths commonly understood as 
between 200 m and 1,000 m is the meso-
pelagic zone, where organismal respi-
ration is higher relative to deeper areas 
(Costello and Breyer, 2017). Although 
the 1,000 m depth boundary is arbi-
trarily defined, Proud et al. (2017) objec-
tively subdivided the mesopelagic region 
into distinct subzones using organismal 
echolocation data, and Reygondeau et al. 
(2017) use flux of particulate organic car-
bon to determine biologically meaning-
ful boundaries for the mesopelagic layer. 
Deeper, darker, and colder zones are usu-
ally presented as bathyl, abyssal, and 
hadal zones. Although depth boundaries 
for these regions are largely arbitrary and 
can vary from text to text, they are meant 
to describe the biogeochemical varia-
tion that is correlated with depth. It is 

possible that as depth changes, variation 
in temperature and chemical composi-
tion creates distinct ecological zones rep-
resented by different ecological commu-
nities. However, this concept has never 
been objectively tested using data at a 
global scale. With few exceptions (Oliver 
and Irwin, 2008; Hardman-Mountford 
et al., 2009; Harris and Whiteway, 2009; 
Kavanaugh et  al., 2014; Schoch et  al., 
2014; Reygondeau et  al., 2017), most 
existing marine maps and zonation sys-
tems are derived from supervised clas-
sification and thus are influenced by the 
perspectives of their authors (Costello, 
2009). To test whether recognizable 
boundaries exist vertically and horizon-
tally in the global ocean, we clustered 3D 
ocean cells into groups using an unsuper-
vised classification of physical and chem-
ical environmental variables. 

METHODS
We used the complete set of variables 
from the 2013 World Ocean Atlas data set, 
version 2 (Locarnini et  al., 2013; Zweng 
et  al., 2013; Garcia et  al., 2014a, 2014b) 
as our source of physical and chemi-
cal environmental data for defining the 
ocean mesh and subsequently modeling 
the ecological marine units. The WOA 

data set is a compendium of data from a 
variety of ocean research and monitoring 
programs over the past five decades. It is 
an authoritative 57-year climatology that 
contains over 52 million points, hereafter 
referred to as the ocean mesh. Each point 
is attributed with values for temperature, 
salinity, dissolved oxygen, nitrate, phos-
phate, and silicate, and all WOA values 
are corrected for the effect of pressure on 
each variable. The WOA has a horizon-
tal spatial resolution of ¼° × ¼° for tem-
perature and salinity, and 1° × 1° for oxy-
gen, nitrate, phosphate, and silicate. In 
the vertical dimension, points are located 
at variable depth intervals, ranging from 
5 m increments near the surface to 100 m 
increments at depth. A total of 102 depth 
zones extend to 5,500 m. The depth inter-
vals are as follows: 5 m (from 0 m to 
100 m), 25 m (from 100 m to 500 m), 
50 m (from 500 m to 2,000 m), and 100 m 
(from 2,000 m to 5,500 m). The deepest 
points for which data are available do not 
necessarily represent the actual depth of 
the water column because the 5,500 m 
lower limit of the WOA data is approx-
imately half of the maximum depth of 
the ocean (Jamieson, 2011). However, 
the 5,500 m lower limit does substan-
tially exceed the mean depth (3,682.2 m) 

FIGURE 1. Traditional oceanographic notions of vertical zonation in the ocean. Modified  
from Pinet (2009).
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of the ocean as reported in the review by 
Charette and Smith (2010). The WOA 
data are water-column variables, but sea-
floor geomorphology may also be signif-
icant in influencing both these variables 
and species ecology. The first global digi-
tal map of seafloor geomorphic features is 
now available (Harris et al., 2014).

Temporally, the WOA archive is avail-
able in seasonal, annual, and decadal res-
olutions. Seasonal data are not available 
for all points in the mesh, many of which 
may not have been visited regularly over 
the 57-year period. Moreover, data from 
polar regions, typically collected only 
during warmer summer months when 
access to ice-bound regions is easier, may 
under-report true salinity values. Decadal 
values of the WOA represent the average 
of the annual mean values for the param-
eters, themselves derived from the sea-
sonal data. We used the 57-year record of 
the parameters, which are provided in the 
WOA database as archival means, derived 
from the decadal averages. The modeled 
EMUs therefore represent average distri-
butions of the volumetric regions over the 
past 57 years. 

We constructed an ocean point mesh as 
a 3D spatial data structure that holds the 
WOA data in its highest available spatial 
resolution of ¼° × ¼° (~27 km × 27 km at 
the equator) in the horizontal dimension. 
While the temperature and salinity data 
are available at this resolution, the other 
four variables (dissolved oxygen, nitrate, 
phosphate, and silicate) have a coarser 
native resolution (1° × 1°) and were there-
fore downscaled to the ¼° resolution to 
reconcile all data to a common work-
ing horizontal resolution. This down- 
sampling was accomplished by subdivid-
ing the 1° × 1° by depth-interval rectan-
gular box cuboid into sixteen ¼° × ¼° 
by depth-interval cuboids and assign-
ing the original attribute values of the 
parent cuboid’s centroid to the cen-
ter points of all of the ¼° subdivisions. 
In this piecewise-constant re-meshing, 
we assume that the attributes of the par-
ent cuboid are uniform throughout the 
cuboid’s volume. This is similar to the 
universal assumption in vector-based 
GIS that the attributes of a vector poly-
gon are uniform throughout the poly-
gon’s extent. Statistical and nonstatistical 

downscaling of coarser-resolution data 
such as global climate model (GCM) 
data to finer-  resolution data is a com-
mon practice in global change modeling 
(Hall, 2014), and it is also the basis for 
pansharpening of multi resolution imag-
ery (Vivone et al., 2015). 

The data matrix can be conceptualized 
as columnar stacks of cells whose cen-
troids define the point mesh (Figure  2). 
In areas where the deepest (5,500 m) 
WOA data points did not reach the sea-
floor, the bottom of the mesh was sim-
ply extended downward to the seafloor 
for visualization, without interpolating 
additional data points. The mesh spac-
ing matched the WOA data matrix and 
allowed for the structuring and sym-
bolization of data as columnar volumes 
(or other shapes) that can be queried by 
ranges of values, and can be spatially ana-
lyzed via proximity algorithms and multi-
variate statistical clustering. We first con-
structed an “empty” ocean mesh using 
the 52,487,233 WOA point locations, 
and then attached the WOA attribute 
data to those points. The water column 
was bounded at the top by the sea sur-
face, and at the bottom by the seafloor, as 
defined in the geomorphic map of Harris 
et al. (2014). The set of cells intersecting 
or nearest to the global shoreline (or ice 
masses) defined the horizontal extent of 
the water column. 

We statistically clustered the points in 
the mesh in order to identify environ-
mentally distinct regions in the water col-
umn. The clustering was blind to both 
the depth of the point and the thickness 
of the depth interval at that point’s verti-
cal position in the water column. The “big 
data” nature of the clustering of the entire 
ocean volume required sophisticated spa-
tial data processing and functionality. 
The clustering was implemented using 
SAS software (©2015 SAS Institute Inc; 
SAS and all other SAS Institute Inc. prod-
uct or service names are registered trade-
marks or trademarks of SAS Institute 
Inc., Cary, NC, USA). The ArcGIS plat-
form was utilized for subsequent geo-
spatial assessment and visualization of 

FIGURE  2. A vertical column of the ocean 
mesh framework (illustrative and not to scale), 
produced from World Ocean Atlas 2013 data 
extracted into a set of 52,487,233 points 
at ¼° × ¼° (~27 km × 27 km at the equator) 
horizontal resolution and variable depth 
z ranging from 5 m intervals near the sur-
face to 100 m intervals near the deep sea-
floor. After constructing the mesh, points 
were attributed with 57-year average val-
ues for temperature, salinity, dissolved 
oxygen, nitrate, phosphate, and silicate. 
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the clusters. We utilized a k-means clus-
tering algorithm to identify the physi-
cal and chemical structure of the water 
column. The k-means algorithm deter-
mines k centroids in the data and clusters 
points by assigning them to the nearest 
centroid. Of hundreds of clustering algo-
rithms available, the k-means approach is 
the most widely used due to its simplic-
ity, versatility, extensibility, data handling 
ability, and generally robust performance 
(Jain, 2010), although it is sensitive to ini-
tial placement of cluster centers (Celebi 
et al., 2013). While concurrent implemen-
tation and integration of complementary 
clustering approaches has been advocated 
for ocean partitioning (Oliver et al., 2004; 
Reygondeau et  al., 2017), this multi- 
algorithm approach was outside the 
scope of our globally comprehensive and 
data intensive analysis. 

Our statistical approach was proto-
typed on a subset (97,329 points) of the 
global point mesh representing the ocean 
volume off the US West Coast out to the 
Exclusive Economic Zone (EEZ). The 
successful identification of known hydro-
graphic features (e.g.,  the Mendocino 
Ridge and Fracture Zone off the northern 
California coast) in the prototype exer-
cise provided initial assurances that the 
clustering approach would be sensitive to 
environmental gradients, and that scal-
ing up to global clustering was warranted. 
We therefore implemented the clustering 
globally on all cells (>52 million points), 
with all variables included.

All the WOA variables were standard-
ized to a mean of zero and a standard 
deviation of one to establish a common 
basis for comparison between variables 
of disparate units and value ranges and 
to promote relative equal weightings 
of the inputs to the clustering (Milligan 
and Cooper, 1988). After standardiza-
tion, a Pearson’s correlation analysis of 
the six inputs was implemented to iden-
tify colinearity among variables. To 
determine the optimal number of clus-
ters that would best represent the col-
lective variation in the input data, clus-
tering of all the WOA points with all 

six variables was executed in repeated 
sequential runs, where the number of 
clusters produced was incremented by 
one with each run, starting with two 
clusters, and ending with 100 clus-
ters. The optimum cluster number was 
determined by inspection of the behav-
ior of the pseudo F-statistic (Calinski 
and Harabasz, 1974; Milligan and 
Cooper, 1985) across the iterations. The 
pseudo-F statistic is the ratio of between- 
cluster variance to within- cluster vari-
ance. Larger values of pseudo-F indicate 
“tight” (i.e.,  low within- cluster variance) 
and “well separated” (i.e., high between- 
cluster variance) clusters. A plot of this 
statistic against the number of clusters 
should show local peaks of the pseudo-F 
value at potential cluster- number optima. 
We did not extend the clustering beyond 
100 clusters because there was a clear 
overall decline in pseudo-F values as the 
number of clusters increased. Local peaks 
representing relatively high pseudo-F val-
ues were found at 17, 28, 37, and 50 clus-
ters (Figure 3). We explored summary 
statistics and the horizontal and verti-
cal spatial distributions at each of the 
four local peaks. At 37 clusters, a strong 
peak was observed prior to a relatively 

sustained decline in the pseudo-F curve 
(Figure  3), which we interpreted as a 
point where additional clustering is less 
likely to reduce the within- cluster vari-
ation. Thus, the 37-cluster solution was 
the basis for our partitioning of the water 
column, and resulted in the 37 EMUs 
described below.

Following the depth-blind statisti-
cal clustering, basic descriptive statistics 
(mean, minimum, maximum, and stan-
dard deviation) were produced for the six 
deterministic parameters (temperature, 
salinity, dissolved oxygen, nitrate, phos-
phate, and silicate) for each EMU. The 
unit-middle depth for each EMU was 
also calculated as the median depth of all 
the points allocated into an EMU.

We then labeled the clusters using the 
naming criteria (Table  2) of the Coastal 
and Marine Ecosystem Classification 
Standard (CMECS), a Federal Geographic 
Data Committee standard for the United 
States (FGDC, 2012). The CMECS labels 
for the EMUs begin with their depth 
zone assignments based on their median 
depths, followed by a concatenation of 
the CMECS descriptors for tempera-
ture, salinity, and dissolved oxygen. The 
CMECS framework does not include 

FIGURE 3. A plot of the pseudo-F statistic (y axis) against the requested num-
ber of clusters (x axis) in successive iterations from 2 to 100 clusters, incre-
mented by one for each successive iteration. The red vertical line at 37 clus-
ters shows a strong peak prior to a relatively sustained decline in the curve of 
the pseudo-F statistic, which we interpret as a stopping-point where additional 
clustering does not significantly reduce within-cluster heterogeneity (Calinski 
and Harabasz, 1974; Milligan and Cooper, 1985). We therefore chose the 
37-cluster solution to represent the number and distributions of global EMUs.
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standard names and value ranges for 
nitrate, phosphate, and silicate. For these 
three variables, labels corresponding to 
high, medium, and low nutrient concen-
trations in a relative sense were deter-
mined from assessment of the observed 
distribution of values. These three nutri-
ent descriptors were added to the four 
CMECS descriptors for a total of seven 
descriptors in the CMECS names. The 
sequence of presentation of the descrip-
tors used in the CMECS names is: depth, 
temperature, salinity, dissolved oxygen, 
nitrate, phosphate, and silicate. While 
depth was not used as a clustering vari-
able, it is a key descriptor in the CMECS 
classification and an important variable 
for considering ocean depth zones, and 
was therefore included in the CMECS 
labeling. As an illustrative example of 
the CMECS nomenclature, an EMU 
cluster might be named Bathypelagic, 
Very Cold, Euhaline, Severely Hypoxic, 
High Nitrate, Medium Phosphate, and 
Medium Silicate.

We then developed a separate and par-
allel label, the EMU name (Table  2), to 
simplify the CMECS terminology. The 
EMU equivalent of the CMECS clus-
ter described above is Deep, Very Cold, 
Normal Salinity, Very Low Oxygen, High 
Nitrate, Medium Phosphate, and Medium 
Silicate. The CMECS and simplified EMU 
names reflect the properties of the EMU, 
not its location in the ocean. Naming 
the EMUs based on their chemical and 
physical properties is both accurate and 
“classification neutral” in the sense that 
the label is purely descriptive in a compo-
sitional sense (Sayre et al., 2014). 

Finally, in addition to the CMECS 
and EMU compositional names, we 
also developed a set of EMU volumet-
ric region names that describe both their 
geographic distributions in the ocean and 
their vertical positions in the water col-
umn. In the field of quantitative water 
mass analysis, water masses are generally 
associated with or defined by their for-
mation regions (Tomczak, 1999; Emery, 
2001) or surface water sources (Gebbie 
and Huybers, 2010, 2011). Because we 

TABLE 2. Depth and physicochemical properties (column 1) and corresponding depth zones 
and regime units of the Coastal and Marine Ecosystem Classification Standard (CMECS; FGDC, 
2012; column 2) and of Ecological Marine Units (EMUs; column 3). CMECS regimes do not exist 
for nitrate, phosphate, and silicate. They were therefore adopted from EMU terms developed 
for these three variables, based on assessment and classification of the approximately 52 mil-
lion observations for each nutrient into three relative classes (high, medium, and low). 

DEPTH (m) CMECS MARINE OCEANIC  
WATER COLUMN LAYER

EMU WATER  
COLUMN LAYER

0 to <200 Epipelagic Shallow

200 to <1,000 Mesopelagic Moderate Depth

1,000 to <4,000 Bathypelagic Deep

≥4,000 Abyssopelagic Very Deep

TEMPERATURE 
(°C)

CMECS TEMPERATURE REGIME EMU TEMPERATURE 
REGIME

20 to <30 Warm to Very Warm Warm

10 to <20 Moderate to Cool Cool

5 to <10 Cold Cold

0 to <5 Very Cold Very Cold

≤0 Frozen/Superchilled Superchilled

SALINITY 
(dimensionless)

CMECS SALINITY REGIME EMU SALINITY 
REGIME

>30 Euhaline to Hyperhaline Normal Salinity

 18 to 30 Lower to Upper Polyhaline Low Salinity

 <18 Oligohaline to Mesohaline Very Low Salinity

DISSOLVED 
OXYGEN (ml/L)

CMECS OXYGEN REGIME EMU OXYGEN 
REGIME

≥8 Highly Oxic to Very Oxic High Oxygen

4 to <8 Oxic Moderate Oxygen

2 to <4 Hypoxic Low Oxygen

0.1 to <2 Severely Hypoxic Very Low Oxygen

<0.1 Anoxic No Oxygen

NITRATE 
(µM)

CMECS NITROGEN REGIME 
(adopted from next column)

EMU NITROGEN 
REGIME

>30 High Nitrate High Nitrate

10 to 30 Medium Nitrate Medium Nitrate

<10 Low Nitrate Low Nitrate

PHOSPHATE
(µM)

CMECS PHOSPHATE REGIME  
(adopted from next column)

EMU PHOSPHATE 
REGIME

>5 High Phosphate High Phosphate

2.5 to 5 Medium Phosphate Medium Phosphate

<2.5 Low Phosphate Low Phosphate

SILICATE 
(µM)

CMECS SILICATE REGIME 
(adopted from next column)

EMU SILICATE 
REGIME

>100 High Silicate High Silicate

50 to 100 Medium Silicate Medium Silicate

<50 Low Silicate Low Silicate
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have not identified the source geogra-
phies for our EMUs, we avoid calling 
them water masses herein. We instead 
describe the total volumetric distribu-
tion of an EMU as a volumetric region 
rather than as a water mass. Each EMU 
volumetric region name contains both 
a geographic descriptor and a CMECS 
depth zone class (epipelagic, meso-
pelagic, bathypelagic, and abyssopelagic) 
based on the median depth of the EMU. 
Examples of EMU volumetric regions 
include Antarctic and Subantarctic 
Bathypelagic, Mediterranean and Red 
Seas Mesopelagic, and Arctic and 
Labrador Sea Epipelagic. 

RESULTS
The strength of the relationship between 
the standardized variables and the result-
ing EMU configurations was either strong 
(>90 to <95% confidence) or statistically 
significant (≥ 95% confidence) for each 
of the six input variables: temperature 
(R2 = 0.95), salinity (R2 = 0.97), dissolved 
oxygen (R2 = 0.91), nitrate (R2 = 0.96), 
phosphate (R2 = 0.96), and silicate 
(R2 = 0.94). A strong correlation (>.8) 
among the three nutrient inputs (nitrate, 
phosphate, silicate) was observed, sug-
gesting that they may have had a slightly 
disproportionate influence on the cluster-
ing. However, we did not remove any of the 
nutrient variables and then re-cluster in 
order to ensure that regional variation in 
any of the six input variables could influ-
ence the clustering outcome. The ratio 
of between-cluster variance to within-  
cluster variance (R2/(1 − R2) was: tem-
perature, 17.47; salinity, 12.89; dissolved 
oxygen, 10.72; nitrate, 24.42; phosphate, 
22.11; and silicate, 15.12. These results 
indicate that the six parameters contrib-
uted strongly and approximately equally 
to the identification of the clusters.

Clustering the entire set of points in 
the global mesh yielded 37 mutually 
exclusive clusters (EMUs) that are volu-
metric regions of relative compositional 
homogeneity. For a listing of EMUs 
described using CMECS and EMU ter-
minology, and the names of the EMU 

volumetric regions, see Appendix  1 
(available in the online supplementary 
materials). Maps of the EMUs, along 
with descriptive statistics on their envi-
ronmental characteristics, are found in 
Appendix 2 (also available in the online 
supplementary materials).

The EMUs are presented in a num-
ber of 2D slices at several depths in 
Figure  4. A plot of EMU area against 
depth, shown in Figure  5, characterizes 
the vertical position of the EMUs in the 
water column and the depth at which 
the maximum and minimum horizon-
tal distributions occur can be easily visu-
ally interpreted. This graph also shows 

the vertical distribution of the EMUs 
with respect to the CMECS boundar-
ies for epipelagic (0 m to 200 m), meso-
pelagic (200 m to 1,000 m), bathypelagic 
(1,000  m to 4000  m), and abyssopelagic 
(>4,000 m) zones. The number labels in 
each EMU represent the EMU number 
for cross-referencing to the EMU names 
and maps in Appendices 1 and 2. These 
EMU number labels have been placed 
vertically at a depth corresponding to the 
median unit-middle of the EMU.

The global maps of the EMUs listed in 
Appendix  2 show the maximum global 
horizontal extent of the clusters look-
ing vertically from above, as well as the 

FIGURE 4. The global distribution of EMUs at eight depth intervals. EMUs represent physically and 
chemically distinct volumetric regions based on combined temperature, salinity, oxygen, and nutri-
ent gradients. While a total of 37 EMUs were statistically determined, a number of them are small, 
localized, and shallow, and are not discernible in these depth-layer maps. Black indicates regions 
shallower than the depth at that layer. Major hydrographic features like Northern and Southern 
Hemisphere gyre systems and coastal upwelling-based westward flow of water from western con-
tinental margins are evident, particularly at shallower depths (upper left and right panels). Colors 
reflect mean EMU temperatures, with pink colors representing warmer EMUs and blue colors rep-
resenting colder EMUs.
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thickness of the EMU at any location. 
Interacting visually with true volumes in 
3D, especially with such a large resource, 
is a software challenge, but it is possible 
with commercially available virtual globe-
based visualization software, as shown in 
Figure 6. Although the EMUs are continu-
ous data surfaces, Figure 6 shows that they 
are more easily visualized as stacked bands 
on horizontally separated cylinders. 

The size and complexity of the EMU 
resource, a de facto example of big data 
with over 52 million attributed points 
in three dimensions, potentially pres-
ents barriers to its efficient use. To help 
mitigate this challenge, we developed 
an open-access web application, EMU 
Explorer (http://livingatlas.arcgis.com/
emu) that permits real-time query and 
visualization of both the points and the 
EMUs by anyone with Internet access. 
The application shows the vertical profile 

of the water column from sea surface to 
seafloor at any user-selected surface loca-
tion, and it returns the values for the 
physical and chemical properties of the 
points in the column. It also identifies the 
EMUs associated with any point in the 
vertical profile and provides the EMUs’ 
descriptive statistics. 

DISCUSSION
EMU Geographic Distributions
Twenty-two of the EMUs are large, with 
essentially global or large regional dis-
tributions, while the 15 others are small, 
shallow, and coastal, and collectively rep-
resent only about 1% of the ocean vol-
ume. They generally have lower salini-
ties than the other EMUs, and are found 
where mixing of fresh and saline waters is 
occurring (e.g., the Baltic Sea and north-
ern, ice-occurring regions). While suit-
able for global-scale stratification of the 

open ocean into large volumetric regions, 
the ¼° horizontal spatial resolution of 
the ocean mesh may not be sufficient to 
completely resolve the finer resolution, 
ecologically meaningful coastal systems. 
We therefore consider these very small, 
yet statistically derived coastal clusters as 
likely indicators of coastal and estuarine 
EMUs that need to be further clarified. 

Latitudinal distribution patterns 
of EMUs are observed (Figure  4 and 
Appendix  2), with EMUs occurring in 
latitudinal biomes that include polar 
and subpolar regions (e.g.,  EMUs  14, 
19, 23, 25 and 31), temperate regions 
(e.g.,  EMUs  3, 8, and 37), subtropi-
cal and tropical regions (e.g.,  EMUs  11, 
24, 26, 33), and equatorial regions 
(e.g.,  EMUs  10, 18). Bimodal latitudinal 
distributions (Northern and Southern 
Hemispheres) are observed (e.g., EMUs 8, 
11, 21, and 24). Some EMUs are associ-
ated with physiographic features, such as 
the Mendocino Ridge and Fracture Zone, 
situated near the southern boundary of 
EMU 30. Parts of some EMUs are located 
in the discharge regions of major rivers 
like the Amazon and Congo (EMUs  18 
and 24). The Mediterranean and Red Seas 
were clustered into a single unit (EMU 9), 
consistent with Longhurst’s (2007) identi-
fication of a single biogeochemical prov-
ince for the Mediterranean. Reygondeau 
et  al. (2017), however, objectively iden-
tified 63 three-dimensional, manage-
ment-appropriate subdivisions of the 
Mediterranean, maintaining that while 
global analyses are useful for macro-
scale comparisons of ocean regions, local 
management strategies and policies will 
require appropriately scaled geographic 
assessment and accounting units. 

One very large, deep, circumglobal 
cluster (EMU  13) is observed in the 
Pacific and Indian Oceans but is all but 
absent in the Atlantic, consistent with 
the recognition of a Circumpolar Deep 
Water (CDW) mass by Emery and 
Meincke (1986). Likewise, EMU  29 is 
similar to the Arctic Deep Water (ADW) 
and North Atlantic Deep Water (NADW) 
units of those authors. Although some 

FIGURE  5. EMU distributions by 
depth. The two-dimensional global 
area (km2) at any depth is shown 
for the 22 EMUs that comprise 
99% of the ocean volume. The hor-
izontal boundary lines separat-
ing the depth zone classes are as 
described in the Coastal and Marine 
Ecosystem Classification Standard 
(CMECS), the Federal Geographic 
Data Committee (FGDC) stan-
dard for the United States (FGDC, 
2012). The EMU number labels 
(see Appendices 1 and 2 in the 
online supplementary materials for 
names, maps, and descriptions of 
the EMUs) are placed at the median 
unit-middle depth for each EMU. 
Although the EMUs are not uni-
formly distributed into the CMECS 
depth zones, strong vertical sepa-
ration is evident, with many small 
EMUs in the upper water column 
and fewer larger EMUs in the mid-
dle and lower water columns. Pink 
colors indicate warmer EMUs, and 
blue colors indicate colder EMUs. 
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of the EMUs are similar to water masses 
described by Emery and Meincke, in 
other instances there is less resemblance, 
which is to be expected, given that the 
EMUs were derived from six composi-
tional properties rather than from the 
temperature- and salinity-derived units 
of Emery and Meincke. 

The surface-occurring EMUs (upper 
left panel of Figure  4) can be compared 
with the surface-derived biogeochemical 
provinces (BGCPs) of Longhurst (2007). 
As mentioned above, the Mediterranean 
Sea was identified as a single unit (EMU 9) 
without subdivision in both classifica-
tions. The Mediterranean and Red Seas 
EMU was placed in the mesopelagic class 
because its median unit-middle depth 
(302 m) is between 200 m and 1,000 m, but 
its vertical distribution is throughout the 
water column. Other similarities between 
the EMUs and Longhurst’s BGCPs are 
apparent. Both classification systems 
identify obvious latitudinal banding sep-
arating the Antarctic, Subantarctic, and 
Southern Hemisphere tropics and equa-
torial regions. EMU  18 (North Pacific 
Subtropical and Equatorial Indian 
Epipelagic) closely approximates the dis-
tributions of Longhurst’s North Pacific 
Equatorial Countercurrent Province and 
Pacific Equatorial Divergence Province. 
Several of Longhurst’s provinces in the 
Arctic and Subarctic regions (e.g., Boreal 
Polar Province, Atlantic Arctic Province, 
Atlantic Subarctic Province, North 
Pacific Epicontinental Sea Province) cor-
respond visually with EMUs  5 (Arctic 
Epipelagic), 23 (Arctic and Labrador Sea 
Epipelagic), and 30 (North Pacific and 
Beaufort Sea Epipelagic). The latitudinal 
demarcation between Longhurst’s two 
Indian Ocean provinces (Indian South 
Subtropical Gyre Province and Indian 
Monsoon Gyres Province) is a strong lat-
itudinal delineation between EMUs  11 
(Northern Subtropical and Southern 
Subtropical Epipelagic), 18 (North 
Pacific Subtropical and Equatorial Indian 
Epipelagic), and 24 (Tropical Pacific, 
Tropical Indian, and Equatorial Atlantic 
Epipelagic). The Longhurst system does 

not include bimodal distributions of 
provinces in both Northern and Southern 
Hemispheres as was obtained with some 
EMUs (e.g., EMU 8, Subantarctic, North 
Atlantic, and North Pacific Epipelagic). 
Overall, considerable visual correspon-
dence is observed between Longhurst’s 
BGCPs and the surface-occurring 
EMUs, and a more quantitative compar-
ison is merited.

Another set of ocean-surface regions 
that can be compared to the surface- 
occurring EMUs is that of Gebbie and 
Huybers (2011), who identified seven 
global surface water masses: Antarctic, 
North Atlantic, Subantarctic, North 
Pacific, Arctic, Mediterranean, and 
Tropics, representing the formation 

regions of ocean waters. The boundar-
ies separating these seven source regions 
are also present in the surface-occurring 
EMUs. It is evident that an aggregation of 
EMUs into the Gebbie and Huybers for-
mation regions would be very “clean,” 
resulting in minimal splitting of EMUs 
across formation region boundaries. 

Neither the Large Marine Ecosystems 
of Sherman et al. (2005) nor the Marine 
Ecoregions of the World of Spalding 
et al. (2007) address open-ocean pelagic 
ecosystems, so comparisons between 
them and the geographic extent of the 
EMUs are not feasible. The interpretive, 
expert-derived subdivisions of the Global 
Open Ocean and Deep Seabed (GOODS) 
Biogeographic Classification (UNESCO, 

FIGURE 6. Example of the visualization approach taken to represent the EMUs in three dimensions, 
mapped over space. The region shown is off the eastern coast of Japan. Although the EMUs are 
mapped as a continuous surface, representing them in three dimensions is facilitated by the use of 
stacked cylinders, where each color band on a cylinder is an EMU. In the coastal zone, EMUs are 
single or few, and shallow, whereas offshore there are more and deeper EMUs. Surface tempera-
ture gradients are also apparent between the pink (warmer) EMUs in the south, and the blue (colder) 
EMUs in the north.
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30 realms were obtained from 2D clus-
tering of occurrence records represent-
ing over 65,000 species from the Ocean 
Biogeographic Information System 
(OBIS, http://www.iobis.org) database, 
and they reflect global patterns of spe-
cies endemicity. Initially, we note corre-
spondence between realms and EMUs 
(e.g., realms 2, 5, 7, and 30) in some areas, 
but in other cases a relationship is less 
apparent (e.g., realms 18, 21, and 22). In 
another global assessment of 11,567 spe-
cies occurrences representing 13 tax-
onomic groups, Tittensor et  al. (2010) 
identified concentrations of coastal and 
open-ocean species in the eastern Pacific 
and in mid-latitudinal belts, respectively. 
The mapping of the EMUs will allow 
improved characterization of the hor-
izontal and vertical distributions and 
the chemical and physical natures of 
species-rich regions.

Limitations and Future Work
We recognize limitations in our work 
related to both temporal scaling dimen-
sions and parameters selected for the 
clustering. The WOA data offer several 
native temporal resolutions (seasonal, 
annual, and decadal) that we did not 
exploit. As our aim was to use long-term 
historical average values for the point 
locations, we used the 57-year mean val-
ues for the six parameters to map EMU 

2009) are similarly difficult to compare 
with the quantitative, statistically derived 
EMUs presented here. 

EMU Depth Distributions 
The number of EMUs is highest at or 
near the surface, and decreases with 
depth (Figures  4 and 5). Although we 
used the CMECS criteria and the median 
unit-middle value to classify the EMUs 
into epipelagic, mesopelagic, bathype-
lagic, or abyssopelagic zones, Figure  5 
shows that those depth class assign-
ments, while informative, are also imper-
fect. Many EMUs are distributed across 
depth zone boundaries, with some hav-
ing most of their distribution in one zone, 
but with vertical extensions into upper or 
lower depth zones as well. EMUs vary 
considerably in water column position, 
thickness, and horizontal area at varying 
depths. No EMUs were classified as abys-
sal as there were no EMUs with a median 
unit- middle depth >4,000 m. However, 
the distributions of many EMUs extend 
beyond the 4,000 m bathypelagic/ 
abyssopelagic boundary. Acknowledging 
some overlap, the EMUs appear to be bet-
ter separated, visually, at depths approx-
imately corresponding to water column 
positions from 0 m to 200 m (upper 
water column), 200 m to 2,000 m (mid-
dle water column), and >2,000 m (lower 
water column). Although the EMUs are 

currently classified into CMECS depth 
zones using standardized criteria, an 
attempt to statistically separate EMUs 
into depth classes and associated quanti-
tative determination of the depth bound-
aries for those groupings appears war-
ranted. In addition, the EMUs should 
be assessed for their depth-based rela-
tionship to physical properties like light 
attenuation limits (Stal, 2016) and biolog-
ically mediated phenomena like respira-
tion (Costello and Breyer, 2017) and car-
bon flux (Reygondeau et  al., 2017). We 
suggest that the depth boundaries of the 
vertical zones and the environmental fac-
tors controlling the vertical separation of 
the pelagic ocean need additional analy-
sis and further clarification. 

 
Biogeography and EMUs
Biogeographic regions are delineated 
from an analysis of species distribu-
tion data. The number and types of tax-
onomic groups represented (Fontaine 
et al., 2015), as well as the relative focus 
on endemism (Briggs and Bowen, 2012), 
can vary widely. Although not quan-
titatively assessed, we made a prelimi-
nary visual comparison (Figure 7) of the 
EMUs’ spatial distributions and the dis-
tributions of 30 marine biogeographic 
realms developed from statistical clus-
tering of species-distribution data, based 
on recent work of author Costello. The 

FIGURE 7. Relationship between 
surface-occurring EMU distri-
butions (colors) and marine bio-
geographic realms (numbered, 
outlined polygons), from recent 
work of author Costello. Spatial 
congruence between biogeo-
graphic realms and surface- 
occurring EMUs is apparent for 
some realms (e.g.,  5, 7, 26, 30) 
but not for others (e.g., 18, 21, 22). 
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extents and locations, and this approach 
has been successful in mapping ocean 
regions. However, it prohibits assess-
ment of temporal variability and trends. 
Recent work shows that it would be pos-
sible to construct temporally sequenced 
EMU distribution maps (e.g., Oliver and 
Irwin, 2008; Reygondeau et  al., 2013; 
Kavanaugh et al., 2014). We now have a 
framework for that assessment and are 
planning the development of seasonal, 
annual, and decadal characterizations of 
oceanic water masses. However, the com-
putational requirements for six variables 
increase by orders of magnitude when 
contemplating temporal variations for 
over 52 million points. This is currently a 
big-data challenge (Gallagher et al., 2015; 
Alder and Hostetler, 2015; Coro et  al., 
2016; Wright, 2016), but as spatial pro-
cessing technologies evolve, these kinds 
of analyses will be rendered less compu-
tationally intense than they are at present.

The clustering of oceanic data to derive 
EMUs was based on the six variables in 
the WOA data set. The addition of other 
variables would likely influence the oce-
anic partitioning we present here. The 
inclusion of data on particulate organic 
carbon (POC), carbonate contents, and 
ocean current patterns might influence 
the clustering results. POC plays a crucial 
role in the marine and global carbon cycle 
and is a primary component of oceano-
graphic food webs (Buesseler et al., 2007). 
POC flux was one of the parameters used 
to subdivide the Mediterranean Sea into 
63 biogeochemical regions (Reygondeau 
et al., 2017), where it was used to quan-
titatively separate the mesopelagic layer 
from the bathypelagic layer. Variability 
in the vertical flux of POC is import-
ant for understanding the main path-
ways by which organic carbon is formed 
in ocean surface waters via photosynthe-
sis and then transferred to the deep ocean 
where it may be sequestered (Lutz et al., 
2007). Similarly, the carbonate chemis-
try of the ocean is ecologically import-
ant, as the persistence of ocean acidifi-
cation is likely to have implications for 
many surface and pelagic ecosystems and 

communities (Sherman, 2014; Wallace 
et al., 2014; Thresher et al., 2015). Finally, 
variables associated with ocean currents, 
such as flow direction and magnitude, 
may substantially influence EMU char-
acteristics and distributions. We plan to 
pursue the addition of these attributes to 
the ocean mesh and to study their effects 
on EMU distributions in future statistical 
clustering analyses.

We also plan to enrich the EMU 
resource by combining the EMU data 
with other data layers. This will result in 
the creation of new 2D layers for the sea 
surface and the seafloor. For example, 
for the seafloor, we have combined the 
bottom-occurring EMUs with the sea-
floor physiographic regions and features 
of Harris et al. (2014) in order to evalu-
ate the influence of seafloor geomorphol-
ogy on the water-column structure above 
it. We also have combined a 13-year aver-
age ocean color value data set (chloro-
phyll a from the NASA Aqua-MODIS 
sensor) to our surface-occurring EMUs, 
and plankton abundance characteris-
tics are now available for the surface data 
points and the surface-occurring EMUs. 
We intend to continue adding associa-
tive attributes from other globally avail-
able resources, and we are exploring the 
relationship between EMUs and estab-
lished temporally dynamic climatological 
classifications (Oliver and Irwin, 2008; 
Kavanaugh et al., 2016). 

While we are calling these 37 volu-
metric regions EMUs, we acknowledge 
that their true ecological character has 
not yet been established. Their deriva-
tion from entirely physicochemical data, 
and their similarity to widely recognized 
global surface waters, lends validation to 
the EMUs as physically and chemically 
distinct volumetric regions. We call them 
ecological in the general sense that depth, 
temperature, salinity, oxygen, and nutri-
ents are known to be important in struc-
turing biotic distributions (Longhurst, 
2007; Oliver and Irwin, 2008), and 
because microbial processes shape nutri-
ent and oxygen distributions through-
out the water column (Kavanaugh et al., 

2016), but we have not documented the 
relationship between environmental vari-
ation and species diversity. As a first step, 
we are currently undertaking a more 
quantitative assessment of this relation-
ship between physically and chemically 
distinct regions in the ocean and spe-
cies biogeography, the results of which 
will facilitate a deeper understanding of 
the true ecological nature of the EMUs. 
For example, we are exploring the cross- 
indexing of OBIS species records and 
EMUs, and we expect that subsequent 
versions of EMUs will not only contain 
species records as attributes but may also 
change geographically to be more reflec-
tive of marine organism distributions.

Finally, we recognize the opportu-
nity to use finer-resolution data to cre-
ate a more refined mapping of EMUs at 
regional and local scales, as was demon-
strated by Reygondeau et  al. (2017). 
Moreover, we plan to elucidate the coastal 
and estuarine units in greater detail in an 
independent development of a set of eco-
logical coastal units (ECUs), which will 
be undertaken along the entire global 
shoreline. We are working on the devel-
opment of a new global shoreline vector 
extracted from satellite imagery (30 m 
spatial resolution) and attributed with 
environmental characteristics as the spa-
tial framework for the planned develop-
ment of a global set of ECUs.

CONCLUSIONS
The present EMU mapping effort is an 
objective partitioning of the global ocean 
into environmentally distinct volumet-
ric region units using an aspatial cluster-
ing exercise where clusters were not con-
strained into particular ocean regions 
and the cluster sites were selected by 
homogeneity in physical and chemical 
parameters only, blind to both depth and 
location. We have developed a new clas-
sification scheme for 37 compositionally 
varying marine volumetric regions. Their 
properties are listed using both standard-
ized CMECS descriptors and new EMU 
terminology. EMU volumetric region 
names are compiled by combining a 



Oceanography |  Vol.30, No.1102

geographic descriptor and a depth zone 
term (Appendices 1 and 2). 

The aim of this work was to produce a 
new global characterization and detailed 
data set of marine environments as a 
resource for biogeographic assessments, 
impact studies, biodiversity priority set-
ting, and ecosystem accounting, man-
agement, and research. The mapping of 
global ecological land units (ELUs), spon-
sored by the GEO commission, has now 
been extended to the ocean. We parti-
tioned the global ocean water column 
into 37 physically and chemically dis-
tinct volumetric regions using available 
data from the 57-year World Ocean Atlas 
data set. The global map of EMUs is an 
initial, unsupervised, statistical classifi-
cation approach to mapping ocean envi-
ronmental structure in three dimen-
sions. Based on this methodology, we can 
re-cluster the ocean using additional or 
different deterministic variables if desir-
able, and also cluster the global ocean in 
different time intervals ranging from sea-
sonal to annual to decadal to explore the 
temporal geographies of EMUs. The exis-
tence of the EMUs has the potential to 
facilitate research on the extent to which 
environmental drivers control biotic dis-
tributions. The EMU data we have cre-
ated allow for characterization of the 
physical and chemical environment con-
tained in marine protected areas, fishing 
grounds, or other marine geographies. 
As an open-access resource, the EMU 
data are available to scientists, managers, 
and the interested public. Future work 
will enrich the EMU resource by adding 
additional attributes to the ocean mesh 
and developing a finer resolution ecolog-
ical coastal unit (ECU) product along the 
global shoreline. 

SUPPLEMENTARY MATERIALS
Appendices 1 and 2 are available at https://doi.org/ 
10.5670/oceanog.2017.116.

REFERENCES 
Alder, J.R., and S.W. Hostetler. 2015. Web based visu-

alization of large climate data sets. Environmental 
Modelling & Software 68:175–180, https://doi.org/ 
10.1016/j.envsoft.2015.02.016.

Bailey, R.G. 1996. Ecosystem Geography. Springer-
Verlag, New York, NY, 204 pp. 

Bailey, R.G. 2014. Ecoregions – The Ecosystem 
Geography of the Oceans and Continents, 2nd ed. 
Springer, New York, NY, 180 pp.

Beaugrand, G., I. Rombouts, and R.R. Kirby. 2013. 
Towards an understanding of the pattern of bio-
diversity in the oceans. Global Ecology and 
Biogeography 22:440–449, https://doi.org/10.1111/
geb.12009. 

Briggs, J.C., and B.W. Bowen. 2012. A realignment 
of marine biogeographic provinces with par-
ticular reference to fish distributions. Journal 
of Biogeography 39:12–30, https://doi.org/ 
10.1111/j.1365-2699.2011.02613.x.

Buesseler, K.O., C.H. Lamborg, P.W. Boyd, P.J. Lam, 
T.W. Trull, R.R. Bidigare, J.K.B. Bishop, K.L. Casciotti, 
F. Dehairs, M. Elskens, and others. 2007. Revisiting 
carbon flux through the ocean’s twilight zone. 
Science 316(5824):567–570, https://doi.org/10.1126/
science.1137959.

Calinski, T., and J. Harabasz. 1974. A dendrite 
method for cluster analysis. Communications 
in Statistics 3(1):1–27, https://doi.org/10.1080/ 
03610927408827101.

Celebi, M., H. Kingravi, and P. Vela. 2013. A compara-
tive study of efficient initialization methods for the 
k-means clustering algorithm. Expert Systems with 
Applications 40(1):210–215, https://doi.org/10.1016/ 
j.eswa.2012.07.021.

Charette, M.A., and W.H.F. Smith. 2010. The volume 
of Earth’s ocean. Oceanography 23(2):112–114, 
https://doi.org/10.5670/oceanog.2010.51.

Coro, G., C. Magliozzi, A. Ellenbroek, K. Kaschner, and 
P. Pagano. 2016. Automatic classification of climate 
change effects on marine species distributions in 
2050 using the AquaMaps model. Environmental 
and Ecological Statistics 23:155–180, 
https://doi.org/10.1007/s10651-015-0333-8.

Costello, M.J. 2009. Distinguishing marine hab-
itat classification concepts for ecological 
data management. Marine Ecology Progress 
Series 397:253–268, https://doi.org/10.3354/
meps08317. 

Costello, M.J., and S. Breyer. 2017. Ocean depths: The 
mesopelagic and implications for global warming. 
Current Biology 27:113–119, https://doi.org/10.1016/ 
j.cub.2016.11.042.

Emery, W.J. 2001. Water types and water 
masses. Pp. 1,556–1,567 in Encyclopedia of 
Ocean Sciences. J.H. Steele, S.A. Thorpe, and 
K.K. Turekian, eds, Academic Press, San Diego, CA, 
3,399 pp.

Emery, W.J., and J. Meincke. 1986. Global water 
masses: Summary and review. Oceanologica 
Acta 9(4):383–391.

FAO (Food and Agriculture Organization). 2016. 
Coordinating Working Party Handbook of Fishery 
Statistical Standards, Section H: Fishing Areas 
for Statistical Purposes. FAO Fisheries and 
Aquaculture Department, http://www.fao.org/
fishery/cwp/handbook/h/en.

FGDC (Federal Geographic Data Committee). 2012. 
Coastal and Marine Ecological Classification 
Standard Version 4.0. Report FGDC-STE-18-2012, 
Federal Geographic Data Committee Secretariat, 
US Geological Survey, Reston, Virginia, 343 pp.

Fontaine, A., R. Devillers, P.R. Peres-Neto, and 
L.E. Johnson. 2015. Delineating marine eco-
logical units: A novel approach for deciding 
which taxonomic group to use and which tax-
onomic resolution to choose. Diversity and 
Distributions 21(10):1,167–1,180, https://doi.org/10.1111/
ddi.12361.

Gallagher, J., J. Orcutt, P. Simpson, D. Wright, 
J. Pearlman, and L. Raymond. 2015. Facilitating 
open exchange of data and information. Earth 
Science Informatics 8:721–739, https://doi.org/ 
10.1007/s12145-014-0202-2.

Garcia, H.E., R.A. Locarnini, T.P. Boyer, J.I. Antonov, 
O.K. Baranova, M.M. Zweng, J.R. Reagan, and 
D.R. Johnson. 2014a. World Ocean Atlas 2013 
version 2 (WOA13 V2), Volume 3: Dissolved 
Oxygen, Apparent Oxygen Utilization, and Oxygen 
Saturation. S. Levitus, ed., and A. Mishonov, 

technical ed., NOAA Atlas NESDIS 75, NOAA 
National Centers for Environmental Information, 
Silver Spring, MD, 27 pp.

Garcia, H.E., R.A. Locarnini, T.P. Boyer, J.I. Antonov, 
O.K. Baranova, M.M. Zweng, J.R. Reagan, and 
D.R. Johnson. 2014b. World Ocean Atlas 2013 
version 2 (WOA13 V2), Volume 4: Dissolved 
Inorganic Nutrients (phosphate, nitrate, silicate). 
S. Levitus, ed., and A. Mishonov, technical ed., 
NOAA Atlas NESDIS 76, NOAA National Centers 
for Environmental Information, Silver Spring, MD, 
25 pp.

Gebbie, G., and P. Huybers. 2010. Total matrix inter-
comparison: A method for determining the geom-
etry of water-mass pathways. Journal of Physical 
Oceanography 40:1,710–1,728, https://doi.org/ 
10.1175/2010JPO4272.1.

Gebbie, G., and P. Huybers. 2011. How is the ocean 
filled? Geophysical Research Letters 138, L06604, 
https://doi.org/10.1029/2011GL046769.

Hall, A. 2014. Projecting regional change. Science 
346(6216):1,461–1,462, https://doi.org/10.1126/ 
science.aaa0629.

Hardman-Mountford, N.J., T. Hirata, K. Richardson, 
and J. Aiken. 2009. An objective methodology 
for the classification of ecological pattern into 
biomes and provinces for the pelagic ocean. 
Remote Sensing of Environment 112:3,341–3,352, 
https://doi.org/10.1016/j.rse.2008.02.016. 

Harris, P.T., M. Macmillan-Lawler, J. Rupp, and 
E.K. Baker. 2014. Geomorphology of the oceans. 
Marine Geology 352:4–24, https://doi.org/10.1016/ 
j.margeo.2014.01.011.

Harris, P.T., and T. Whiteway. 2009. High seas 
marine protected areas: Benthic environmen-
tal conservation priorities from a GIS analysis of 
global ocean biophysical data. Ocean & Coastal 
Management 52:22–38, https://doi.org/10.1016/ 
j.ocecoaman.2008.09.009.

Heinzer, T.J., M.D. Williams, E.C. Dogrul, 
T.N. Kadir, C.F. Brush, and F.I. Chung. 2012. 
Implementation of a feature-constraint mesh gen-
eration algorithm within a GIS. Computers and 
Geosciences 49:46–52, https://doi.org/10.1016/ 
j.cageo.2012.06.004.

Holt, B.G., J. Lessard, M.K. Borregaard, S.A. Fritz, 
M.B. Araújo, D. Dimitrov, P. Fabre, C.H. Graham, 
G.R. Graves, K.A. Jønsson, and others. 2013. 
An update of Wallace’s zoogeographic 
regions of the world. Science 339(6115):74–78, 
https://doi.org/10.1126/science.1228282.

ICES (International Council for Exploration of the 
Seas). 2004. Report of the Regional Ecosystem 
Study Group for the North Sea. April 5–7, 2004, 
ICES CM 2004/ACE:06, International Council for 
Exploration of the Seas, Copenhagen, Denmark.

IHO (International Hydrographic Organization). 
2002. International Hydrographic Organization 
Publication S-23: Limits of Oceans and Seas, draft 
4th ed. International Hydrographic Organization, 
Paris, Monaco, https://www.iho.int/mtg_docs/
com_wg/S-23WG/S-23WG_Misc/Draft_2002/
Draft_2002.htm.

Jain, A.K. 2010. Data clustering: 50 years 
beyond k-means. Pattern Recognition 
Letters 31(8):651–666, https://doi.org/10.1016/ 
j.patrec.2009.09.011.

Jamieson, A.J. 2011. Ecology of deep oceans: 
Hadal trenches. eLS, https://doi.org/10.1002/ 
9780470015902.a0023606.

Kavanaugh, M.T., B. Hales, M. Saraceno, Y.H. Spitz, 
A.E. White, and R.M. Letelier. 2014. Hierarchical 
and dynamic seascapes: A quantitative frame-
work for scaling pelagic biogeochemistry and ecol-
ogy. Progress in Oceanography 120:291–304, 
https://doi.org/10.1016/j.pocean.2013.10.013. 

Kavanaugh, M.T., M.J. Oliver, F.P. Chavez, R.M. Letelier, 
F.E. Muller-Karger, and S.C. Doney. 2016. 
Seascapes as a new vernacular for pelagic ocean 
monitoring, management and conservation. ICES 
Journal of Marine Science 73(7):1,839–1,850, 
https://doi.org/10.1093/icesjms/fsw086.

https://doi.org/10.5670/oceanog.2017.116
https://doi.org/10.5670/oceanog.2017.116
https://doi.org/10.1016/j.envsoft.2015.02.016
https://doi.org/10.1016/j.envsoft.2015.02.016
https://doi.org/10.1111/geb.12009
https://doi.org/10.1111/geb.12009
https://doi.org/10.1111/j.1365-2699.2011.02613.x
https://doi.org/10.1111/j.1365-2699.2011.02613.x
https://doi.org/10.1126/science.1137959
https://doi.org/10.1126/science.1137959
https://doi.org/10.1080/03610927408827101
https://doi.org/10.1080/03610927408827101
https://doi.org/10.1016/j.eswa.2012.07.021
https://doi.org/10.1016/j.eswa.2012.07.021
http://dx.doi.org/10.5670/oceanog.2010.51
https://doi.org/10.1007/s10651-015-0333-8
https://doi.org/10.3354/meps08317
https://doi.org/10.3354/meps08317
https://doi.org/10.1016/j.cub.2016.11.042
https://doi.org/10.1016/j.cub.2016.11.042
http://www.fao.org/fishery/cwp/handbook/h/en
http://www.fao.org/fishery/cwp/handbook/h/en
https://doi.org/10.1111/ddi.12361
https://doi.org/10.1111/ddi.12361
https://doi.org/10.1007/s12145-014-0202-2
https://doi.org/10.1007/s12145-014-0202-2
https://doi.org/10.1175/2010JPO4272.1
https://doi.org/10.1175/2010JPO4272.1
https://doi.org/10.1029/2011GL046769
https://doi.org/10.1126/science.aaa0629
https://doi.org/10.1126/science.aaa0629
http://dx.doi.org/10.1016/j.rse.2008.02.016
https://doi.org/10.1016/j.margeo.2014.01.011
https://doi.org/10.1016/j.margeo.2014.01.011
https://doi.org/10.1016/j.ocecoaman.2008.09.009
https://doi.org/10.1016/j.ocecoaman.2008.09.009
https://doi.org/10.1016/j.cageo.2012.06.004
https://doi.org/10.1016/j.cageo.2012.06.004
https://doi.org/10.1126/science.1228282
https://www.iho.int/mtg_docs/com_wg/S-23WG/S-23WG_Misc/Draft_2002/Draft_2002.htm
https://www.iho.int/mtg_docs/com_wg/S-23WG/S-23WG_Misc/Draft_2002/Draft_2002.htm
https://www.iho.int/mtg_docs/com_wg/S-23WG/S-23WG_Misc/Draft_2002/Draft_2002.htm
https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/10.1002/9780470015902.a0023606
https://doi.org/10.1002/9780470015902.a0023606
https://doi.org/10.1016/j.pocean.2013.10.013
https://doi.org/10.1093/icesjms/fsw086


Oceanography  |  March 2017 103

Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel. 
2006. World map of the Köppen-Geiger cli-
mate classification updated. Meteorologische 
Zietschrift 15(3):259–263.

Li, Z., and C. Gold. 2004. Multi-dimensional geo-
spatial technology for geosciences. Computers 
and Geosciences 30(4):321–323, https://doi.org/ 
10.1016/j.cageo.2003.09.010.

Liu, J., T. Dietz, S.R. Carpenter, M. Alberti, C. Folke, 
E. Moran, A.N. Pell, P. Deadman, T. Kratz, 
J. Lubchenco, and others. 2007. Complexity 
of coupled human and natural systems. 
Science 317(5844):1,513–1,516, https://doi.org/ 
10.1126/science.1144004.

Liu, J., H.A. Mooney, V. Hull, S.J. Davis, J. Gaskell, 
T. Hertel, and J. Lubchenco, K.C. Seto, P. Gleick, 
C. Kremen, and S. Li. 2015. Systems integra-
tion for global sustainability. Science 347(6225), 
https://doi.org/10.1126/science.1258832.

Locarnini, R.A., A.V. Mishonov, J.I. Antonov, T.P. Boyer, 
H.E. Garcia, O.K. Baranova, M.M. Zweng, C.R. Paver, 
J.R. Reagan, D.R. Johnson, and others. 2013. World 
Ocean Atlas 2013 version 2 (WOA13 V2), Volume 1: 
Temperature. S. Levitus, ed., and A. Mishonov, 
technical ed., NOAA Atlas NESDIS 73, NOAA 
National Centers for Environmental Information, 
Silver Spring, MD, 40 pp.

Longhurst, A. 2007. Ecological Geography of the Sea, 
2nd ed. Academic Press, San Diego, CA, 542 pp., 
https://doi.org/10.1016/B978-012455521-1/50000-0.

Lutz, M.J., K. Caldeira, R.B. Dunbar, and 
M.J. Behrenfeld. 2007. Seasonal rhythms of net 
primary production and particulate organic car-
bon flux to depth describe the efficiency of bio-
logical pump in the global ocean. Journal of 
Geophysical Research 112, C10011, https://doi.org/ 
10.1029/2006JC003706.

Milligan, G.W., and M.C. Cooper. 1985. An examina-
tion of procedures for determining the number of 
clusters in a data set. Psychometrika 50(2):159–179, 
https://doi.org/10.1007/bf02294245.

Milligan, G.W., and M.C. Cooper. 1988. A study of stan-
dardization of variables in cluster analysis. Journal 
of Classification 5:181–204, https://doi.org/10.1007/
BF01897163.

Odum, E.P. 1971. Fundamentals of Ecology, 3rd ed. 
W.B. Saunders, Philadelphia, PA, 574 pp.

Oliver, M.J., S. Glenn, J.T. Kohut, A.J. Irwin, 
O.M. Schofield, M. Moline, and W.P. Bissett. 2004. 
Bioinformatic approaches for objective detec-
tion of water masses on continental shelves. 
Journal of Geophysical Research 109, C07S04, 
https://doi.org/10.1029/2003JC002072.

Oliver, M.J., and A.J. Irwin. 2008. Objective global 
ocean biogeographic provinces. Geophysical 
Research Letters 35, L15601, https://doi.org/ 
10.1029/2008GL034238.

Pinet, P.R. 2009. Invitation to Oceanography, 5th ed. 
Jones and Bartlett Publishers Inc. 

Proud, R., M.J. Cox, and A.S. Brierley. 2017. 
Biogeography of the global ocean’s mesopelagic 
zone. Current Biology 27:113–119, https://doi.org/ 
10.1016/j.cub.2016.11.003.

Reygondeau, G., C. Guieu, F. Benedetti, J. Irrison, 
S. Ayata, S. Gasparini, and P. Koubbi. 2017. 
Biogeochemical regions of the Mediterranean 
Sea: An objective multidimensional and mul-
tivariate environmental approach. Progress in 
Oceanography 151:138–148, https://doi.org/10.1016/ 
j.pocean.2016.11.001.

Reygondeau, G., A. Longhurst, E. Martinez, 
G. Beaugrand, D. Antoine, and O. Maury. 
2013. Dynamic biogeochemical provinces 
in the global ocean. Global Biogeochemical 
Cycles 27(4):1,046–1,058, https://doi.org/10.1002/
gbc.20089. 

Sayre, R., J. Dangermond, C. Frye, R. Vaughan, 
P. Aniello, S. Breyer, D. Cribbs, D. Hopkins, 
R. Nauman, W. Derrenbach er, and others. 2014. 
A New Map of Global Ecological Land Units: 
An Ecophysiographic Stratification Approach. 
Association of American Geographers, 
Washington, DC, 46 pp.

Schoch, G.C., D.M. Albert, and C.S. Shanley. 2014. 
An estuarine habitat classification for a com-
plex fjordal island archipelago. Estuaries and 
Coasts 37(1):160–176, https://doi.org/10.1007/
s12237-013-9622-3.

Sherman, K. 2014. Adaptive management institu-
tions at the regional level: The case of Large 
Marine Ecosystems. Ocean and Coastal 
Management 90:38–49, https://doi.org/10.1016/ 
j.ocecoaman.2013.06.008. 

Sherman, K., M. Sissenwine, V. Christensen, 
A. Duda, G. Hempel, C. Ibe, S. Levin, D. Lluch-
Belda, G. Matishov, J. McGlade, and others. 
2005. A global movement toward an ecosys-
tem approach to marine resources management. 
Marine Ecology Progress Series 300:275–279.

Spalding, M.D., H.E. Fox, G.R. Allen, N. Davidson, 
Z.A. Ferdaña, M. Finlayson, B.S. Halpern, 
M.A. Jorge, A. Lombana, S.A. Lourie, and 
others. 2007. Marine ecoregions of the world: 
A bioregionalization of coastal and shelf areas. 
BioScience 57(7):573–583, https://doi.org/10.1641/
B570707.

Stal, L.J. 2016. The euphotic realm. Pp. 209–225 in 
The Marine Microbiome. L.J. Stal and M.S. Cretoiu, 
eds, Springer International Publishing, Switzerland. 

Sverdrup, H.U., M.W. Johnson, and R.H. Fleming. 
1942. The Oceans: Their Physics, Chemistry and 
General Biology. Prentice-Hall, Englewood Cliffs, 
New York, 1,087 pp.

Thresher, R.E., J.M. Guinotte, R.J. Matear, and 
A.J. Hobday. 2015. Options for managing 
impacts of climate change on a deep-sea com-
munity. Nature Climate Change 5:635–639, 
https://doi.org/10.1038/nclimate2611.

Tittensor, D.P., C. Mora, W. Jetz, H.K. Lotze, D. Ricard, 
E.V. Berghe, and B. Worm. 2010. Global pat-
terns and predictors of marine biodiver-
sity across taxa. Nature 466(7310):1,098–1,101, 
https://doi.org/10.1038/nature09329.

Tomczak, M. 1999. Some historical, theoretical, and 
applied aspects of quantitative water mass anal-
ysis. Journal of Marine Research 57:275–303, 
https://doi.org/10.1357/002224099321618227.

UN (United Nations). 1982. Article 57: Breadth of 
the Exclusive Economic Zone. United Nations 
Convention on the Law of the Sea of 10 December 
1982, United Nations Secretary General, 
Paris, France.

UNESCO (United Nations Educational Scientific and 
Cultural Organization). 2009. Global Open Oceans 
and Deep Seabed (GOODS): Biogeographic 
Classification. UNESCO-IOC Technical Series 84, 
United Nations Educational and Scientific Council 
Intergovernmental Oceanographic Commission, 
Paris, France, 96 pp.

Vivone, G., L. Alparone, J. Channussot, M. Dalla Mura, 
A. Garzelli, G. Licciardi, R. Restaino, and L. Wald. 
2015. A critical comparison among pansharpen-
ing algorithms. IEEE Transactions on Geoscience 
and Remote Sensing 53(5):2,565–2,586, 
https://doi.org/10.1109/TGRS.2014.2361734.

Wallace, R.B., H. Baumann, J.S. Grear, R.C. Aller, and 
C.J. Gobler. 2014. Coastal ocean acidification: The 
other eutrophication problem. Estuarine, Coastal, 
and Shelf Science 148:1–13, https://doi.org/10.1016/ 
j.ecss.2014.05.027.

Watling, L., J. Guinotte, M.R. Clark, and C.R. Smith. 
2013. A proposed biogeography of the deep 
ocean floor. Progress in Oceanography 111:91–112, 
https://doi.org/10.1016/j.pocean.2012.11.003.

Wright, D.J., ed. 2016. Ocean Solutions, Earth 
Solutions, 2nd ed. Esri Press, Redlands, CA, 500 pp. 

Wright, D.J., M.J. Blongewicz, P.N. Halpin, and 
J. Breman. 2007. Arc Marine: GIS for a Blue Planet. 
Esri Press, Redlands, CA, 202 pp. 

Zweng, M.M., J.R. Reagan, J.I. Antonov, R.A. Locarnini, 
A.V. Mishonov, T.P. Boyer, H.E. Garcia, 
O.K. Baranova, D.R. Johnson, D. Seidov, and 
M.M. Biddle. 2013. World Ocean Atlas 2013 
version 2 (WOA13 V2), Volume 2: Salinity. 
S. Levitus, ed., and A. Mishonov, technical ed., 

NOAA Atlas NESDIS 74, NOAA National Centers 
for Environmental Information, Silver Spring, 
Maryland, 39 pp.

ACKNOWLEDGMENTS
We are grateful for the thoughtful reviews of three 
U.S. Geological Survey scientists, Jonathan H. Smith, 
Page C. Valentine, and Ilsa B. Kuffner, as well as those 
of three anonymous reviewers. Cressie’s research 
was partially supported by a 2015–2017 Australian 
Research Council Discovery Project (DP150104576). 
Goodin’s research was partially supported by the 
Langar Foundation. Kavanaugh’s research was par-
tially supported by the National Ocean Partnership 
Program’s Marine Sanctuaries as Sentinel Sites for 
a Demonstration Marine Biodiversity Observation 
Network award (NNX14AP62A). Any use of trade, 
product, or firm names is for descriptive pur-
poses only and does not imply endorsement by the 
U.S. Government.

AUTHORS
Roger G. Sayre (rsayre@usgs.gov) is Senior 
Scientist for Ecosystems, U.S. Geological Survey 
(USGS), Reston, VA, USA. Dawn J. Wright is Chief 
Scientist, Sean P. Breyer is Program Manager 
ArcGIS Content, Kevin A. Butler is Spatial Statistics 
Product Engineer, and Keith Van Graafeiland is 
Product Engineer, all at Esri, Redlands, CA, USA. 
Mark J. Costello is Associate Professor, Institute of 
Marine Science, University of Auckland, Auckland, 
New Zealand. Peter T. Harris is Managing Director, 
GRID-Arendal, Arendal, Norway. Kathleen L. Goodin 
is Chief of Staff, Conservation Science Division, 
NatureServe, Arlington, VA, USA. John M. Guinotte 
is Fish and Wildlife Biologist, U.S. Fish and Wildlife 
Service, Denver, CO, USA, formerly at the Marine 
Conservation Institute, Seattle, WA, USA, during this 
study. Zeenatul Basher is Research Technologist, 
USGS, Reston, VA, USA. Maria T. Kavanaugh is 
Research Associate, Woods Hole Oceanographic 
Institution, Woods Hole, MA, USA. Patrick N. Halpin 
is Associate Professor of Marine Geospatial Ecology, 
Nicholas School of the Environment, Duke University, 
Durham, NC, USA. Mark E. Monaco is Acting Director, 
Center for Coastal Monitoring and Assessment, 
National Ocean Service, National Oceanic and 
Atmospheric Administration, Silver Spring, MD, USA. 
Noel Cressie is Distinguished Professor, National 
Institute for Applied Statistics Research Australia, 
University of Wollongong, Wollongong, Australia. 
Peter Aniello is Geospatial Scientist, Sandia National 
Laboratory, Albuquerque, NM, USA. Charles E. Frye 
is Chief Cartographer, and Drew Stephens is Ocean 
Industry Manager, both at Esri, Redlands, CA, USA.

ARTICLE CITATION
Sayre, R.G., D.J. Wright, S.P. Breyer, K.A. Butler, 
K. Van Graafeiland, M.J. Costello, P.T. Harris, 
K.L. Goodin, J.M. Guinotte, Z. Basher, M.T. Kavanaugh, 
P.N. Halpin, M.E. Monaco, N. Cressie, P. Aniello, 
C.E. Frye, and D. Stephens. 2017. A three- dimensional 
mapping of the ocean based on environmental data. 
Oceanography 30(1):90–103, https://doi.org/10.5670/
oceanog.2017.116.

https://doi.org/10.1016/j.cageo.2003.09.010
https://doi.org/10.1016/j.cageo.2003.09.010
https://doi.org/10.1126/science.1144004
https://doi.org/10.1126/science.1144004
https://doi.org/10.1126/science.1258832
https://doi.org/10.1016/B978-012455521-1/50000-0
https://doi.org/10.1029/2006JC003706
https://doi.org/10.1029/2006JC003706
https://doi.org/10.1007/bf02294245
https://doi.org/10.1007/BF01897163
https://doi.org/10.1007/BF01897163
https://doi.org/10.1029/2003JC002072
http://dx.doi.org/10.1029/2008GL034238
http://dx.doi.org/10.1029/2008GL034238
https://doi.org/10.1016/j.cub.2016.11.003
https://doi.org/10.1016/j.cub.2016.11.003
https://doi.org/10.1016/j.pocean.2016.11.001
https://doi.org/10.1016/j.pocean.2016.11.001
https://doi.org/10.1002/gbc.20089
https://doi.org/10.1002/gbc.20089
https://doi.org/10.1007/s12237-013-9622-3
https://doi.org/10.1007/s12237-013-9622-3
https://doi.org/10.1016/j.ocecoaman.2013.06.008
https://doi.org/10.1016/j.ocecoaman.2013.06.008
https://doi.org/10.1641/B570707
https://doi.org/10.1641/B570707
https://doi.org/10.1038/nclimate2611
https://doi.org/10.1038/nature09329
https://doi.org/10.1357/002224099321618227
https://doi.org/10.1109/TGRS.2014.2361734
https://doi.org/10.1016/j.ecss.2014.05.027
https://doi.org/10.1016/j.ecss.2014.05.027
https://doi.org/10.1016/j.pocean.2012.11.003
mailto:rsayre@usgs.gov
https://doi.org/10.5670/oceanog.2017.116
https://doi.org/10.5670/oceanog.2017.116

